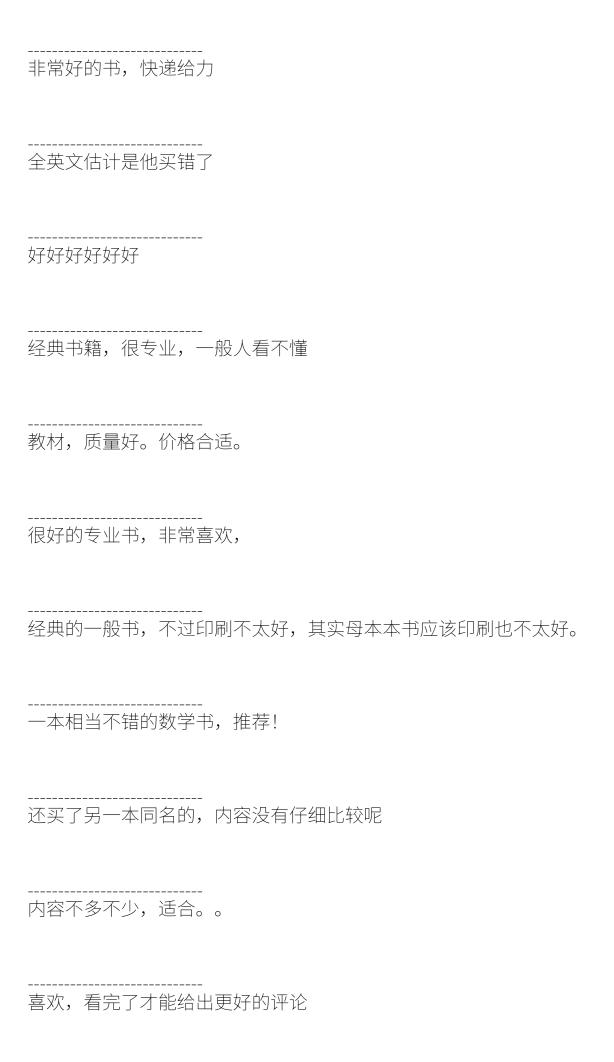

黎曼几何

黎曼几何_下载链接1_


著者:Luther Pfahler Eisenhart 编

黎曼几何_下载链接1_

标签

评论

好书啊,盼着很久了终于买到了。

List of books Edit 1 The General Topology of Dynamical Systems, Ethan Akin (1993, ISBN 978-0-8218-4932-3)[1] 2 Combinatorial Rigidity, Jack Graver, Brigitte Servatius, Herman Servatius (1993, ISBN 978-0-8218-3801-3) 3 An Introduction to Gröbner Bases, William W. Adams, Philippe Loustaunau (1994, ISBN 978-0-8218-3804-4) 4 The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Russell A. Gordon (1994, ISBN 978-0-8218-3805-1) 5 Algebraic Curves and Riemann Surfaces, Rick Miranda (1995, ISBN 978-0-8218-3805-1)
 好

注意区分两种不同的讨论:数学上的讨论和物理学的时空观。 数学上的黎曼几何可以看做是欧式几何的推广。欧式几何中的度量是零曲率的,而黎曼 几何研究更一般的度量,在不同的度量下,空间的曲率是不同的。 物理学中,牛顿力学粗略地说是建立在欧式空间上的。而广曼流形。以下一段讨论涉及物理时所说的"欧式几何"有时 一义相对论里的时空是一个黎 时候是指"牛顿时空观"。 有时候是指 欧氏几何是把认识停留在平面上了,所研究的范围是绝对的平的问题,认为人生活在 个绝对平的世界里。因此在平面里画出的三角形三条边都是直的。两点之间的距离也是 (不是双曲线) 直的。但是假如我们生活的空间是一个双曲面, 这个双曲面, 以把它想象成一口平滑的锅或太阳罩, 我们就在这个双曲面里画 角形,这个三角形的 边的任何点都绝对不能离开双曲面,我们将发现这个三角形的三边无论怎么画都不会 是直线,那么这样的三角形就是罗氏三角形,经过论证发现,任何罗氏三角形的内角和 都永远小于180度,无论怎么画都不能超出180度,但是当把这个双曲面渐渐展开时,一直舒展成绝对平的面,这时罗氏三角形就变成了欧氏三角形,也就是我们在初中学的 平面几何,其内角和自然是180度。

因为平面上的最短距离在平面上,那么曲面上的最短距离也只能在曲面上,而不能跑到

两点间的最短距离是线段,但是在双曲面上,两点间的最短距离则是曲线,

曲面外抻直,故这个最短距离只能是曲线。若我们把双曲面舒展成平面以后,再继续朝平面的另一个方向变,则变成了椭圆面或圆面,这个时候,如果我们在这个椭圆面上画三角形,将发现,无论怎么画,这个三角形的内角和都大于180度,两点间的最短距离依然是曲线,这个几何就是黎曼几何。这个几何在物理上非常有用,因为光在空间上就是沿着曲线跑的,并非是直线,我们生活在地球上,因此我们的空间也是曲面,而不是平面,但为了生活方便,都不做严格规定,都近似地当成了平面。黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量

,空间中的点可用n个实数(x1,·····,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限

黎曼几何 下载链接1

书评

黎曼几何 下载链接1